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ABSTRACT

* A distributed algorithm is presented, for allocating a large number of identical resources (such as airline

tickets) to requests which can arrive anywhere in a distributed network. Resources, once allocated, are never

. returned. The algorithm searches sequentially, exhausting certain neighborhoods, of the request origin

before proceeding to search at greater distances. Choice of search direction is made nondeterministically.

Analysis of expected response time is simplified by assuming that the search direction is chosen

probabilistically, that messages require constant time, that the network is a tree with all leaves at the same

distance from the root, and that requests and resources occur only at leaves. It is shown that the response

time is approximated by the number of messages of one that are sent during the execution of the algorithm,

and that this number of messages is a nondescreasing funtion of the interarrival time for requests. Therefore,

the worst case occurs when requests come in so far apart that they are processed sequentially.

The expected time for the sequential case of the algorithm is analyzed by standard techniques. This time is

shown to be bounded by a constant, independent of the size of the network. It follows that the expected

response time for the algorithm is boundcd in the same way.
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1. Introduction
We consider the problem of allocating a number of identical resources to requests arriving at the

sites of a distributed network. We assume that the network is configured as a tree. The ncdes of the

tree are processors and the edges are communication lines connecting the processors. Processes at

a node may communicate only over the tree edges, with processes at other nodes. Resource

allocation is managed by a collection of communicating resource allocation processes, one at each

node. We will henceforth refer only to the node, identifying it with both the processor and the
resource allocation process at the node.

From time to time, a request arrives at a node (potentially any node of the network) from the

outside world. One of the resources should eventually be granted to the request, subject to the

following conditions:

1. No resource is granted more than once. (Once granted, a resource is not returned. Thus, the

is no legitimate reason to grant it more than once.)

2. At most one resource is granted to each request.

3. A node grants resotirces only to those requests which arrive at that node.

4. If the number of requests is no greater than the number of resources, then each request

eventually receives a resource.

5. If the number of resources is no greater than the number of requests, then each resource is

eventually granted to a request.

For convenience in describing allocation of specific resources to specific requests, we assume

that each resource and request has a unique identifier.

The execution model for this distributed network is event-based. Two types of events may occur

at a node: (1) a request may arrive from the outside world, and (2) a message may arrive from a

neighbor in the tree. Each event triggers an indivisible step at the node. This step may include

changing state, sending messages to other nodes, and granting resources to requests. (We ignore

the time involved in this local processing when we measure the response time, considering only the

communication time.) We assume that the communication lines are reliable, that is, each message is

dolivered exactly once. However, we do not make any assumptions about the order ot message

arrivals.

There are many interesting approaches to solving this resource allocation problem. In a

centralized approach, all resources are controlled by a single central node. When a requesl arrives at

a possibly different node, a "buyer" is commissioned, who travels, via messages, to the cc itral node

, . , , . . .. , , .. ... . .. .-. ., ,, -. . .. . . . . ., .-. . .. , ., . , .: .
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to obtain a resource. The buyer then carries the resource back to the node where the request

orginated, so that the resource can be granted to the request at that location.

An alternative approach is to decentralize control of the resources, giving each node of the

network control of some of them. In this approach, the buyers must search for the resources. An

important choice to be made in designing an efficient search strategy is the choice between sending

only one buyer to search for resources for each request and sending several buyers in parallel to

search different parts of the tree. The former search strategy, which we call the sequential search

strategy, avoids a number of problems arising from the parallel strategy, such as what to do about

other buyers when one of them has found a resource. The next choice, if the sequential search

strategy is used, is the choice of direction to search the tree. A good choice would involve guessing

which nodes are most likely to have free resources when the buyer arrives at them.

Cther strategies involve combining a decentralized search strategy with a dynamic resource

red!sttibut;on F-r tigy, letting resources search for requests (rather than vice versa), or giving nodes

control of fractoris of wc0L rcoes rather than whole resources.

One complk×ity me.Isure wnci is useful for evaluating different strategies is the expected

response time. This Is a measure upon vhich any of the design choices could have a major impact.

For ex:ample. the response tin, when using a centralized strategy must depend strongly on the

network size. However the decentralized strategies have the potential of depending on this size to a

lesser extent.

In the first half of tnis paper, we present an algorithim for solving this resource allocation problem.

Our .flcjorithni is a decentralized solhtion in which each node controls some whole number of

resources. ,, SeuI l search strategy is used, in which the direction to be searched is chosen

nondetermmitically. Certain neighborhoods of the node at which a request originates are exhausted

before the .ianarch prceeds to more distant neighborhoods.

Iri or:, to gair some insight into the expected response time for our algorithm, '.e simulated its

behivior in come sp!,,ial caoss Th. nondeterministic choice of search direction was resolved by

iisin' .j prr _'i~Ilsi5 cnoi,.', where the probabilities for the different directions depended on the initial

lacp ,ior~t 4 resource.s in tiicae directions. We assumed an exponential distribution for time of

-rrw, of r u sts. n f "n ;rm (!,tributiun for arrival location, and a normal probability distribution for

in.y time. We i;3o assumud that all leaves of the network tree were at the same distance

i;-m th root, aod trial r-Ji':wa,; and r,-ources occurred only at leaves. We first noted that expected

r.-rons I~n nvwas elremly good, with an Upper bound tIht seemed to be independent of the size of

t.;f nht' vOr, Iis w.v3 in in:irked cinritras to a ccritralited algorithm. Next, we made a surprising

;.;,- v m 0 - f,; -,,Ctd i,,,)onse l;me aippeared to he a nondecreat;ing function of the Hxpected
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interarrival time for requests. If true, this observation would imply that the worst ca:;e for the

algorithm was actually the case where requests come in so far apart that they are processed one at a

time. This observation contradicted our preliminary intuitions about the algorithm: we had thought

that the worst cases would arise when there was greatest competition among requests se,-rching for

resources.

Using these observations as hints, we were able to carry out a substantial amount of analysis of

the algorithm's behavior, and this analysis comprises the second half of this paper. Namely, we prove

an upper bound on the expected response time for a special case in which, among other restrictions,

all leaves o; the network tree are at the same distance from the root, and requests and resources

occur only at leaves. First, we show that the response time can be bounded in terms of the number of

messages cf one type that are sent during the execution of the algorithm. Then we show that this

number of r-icssages is a nc decreasing function of the interarrival time for requests. The-efore, the

worst case occurs v, hen requests come in so far apart that they are processed sequentially. We

analyz- the expected time for the sequential case, showing it to be bounded by a constant,

independent of the s;ze of the network. It follows that the expected response time for the a-gorithm is

al-zo bounde(i by a constant.

Although the expected response time for our algorithm is very good, we do not claim that it is

optimal. In fact, there are some simple changes that one would expect to yield improvements.

Unfortunatoly, viith these changes, the algorithm can no longer be analyzed using the same

techniques: thus, we are not really certain that they are improvements at all.

There are several contributions in this paper. First, we think that the algorithm itself is interesting.

Second, we have identifhed an interesting criterion for the performance of a distributed algorithm:

that the pcrformance be independent of the size of the network. Satisfying this criterior. seems to

r,'N;1 re an appropriat, dtecentralized style of programming. Third, the analysis is decomposed in an

intreting way: a -e t isil version is analyzed using traditional methods, and the perfcrmance of

the concurrent )k;oir thin s shown to be bounded in terms of the sequential algorithm. It is likely that

tlhw, Jrrd of dcoipr~sition will prove to be useful for analysis of other distributed algori.hms. For

intarnme. a similar torpontion v~i. used in the proof of correctness of a systolic stack [Guihas,

an I I in1j (19 2)j.

The ccntents of the rest oi I pper are as follows. Section 2 contains the algorithm, aid Section

3 cur t:rirs 'rgmen, rt:; for its corrctnrss. Sections 4-6 contain the analysis of the algorithi ). Section

4 proves lhe r not( iii(ity r -:tlt, which implies that the sequential case of the algorithi) is worst.

S ,)'(1 5 ,a,!7y ," It '.,qn'rrlna c;i.. Section 6 pulls togetlit r the results of Sections 4 Z.nd 5, |hs

njimIi ( efeeral tLipi, ,r onind, Frnolly. Section 7 descrihes some remaining questions.

-w ,, -....,.,. r., w, , .,..,, - ,,m,,. . ... '.-.. . . . . ., . , . . . .,- . . (
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2. The Algorithm
In this section, we present our algorithm. We begin with an informal decription, followed by a

more formal presentation.

2.1. Informal Description

We assume that the network is a rooted tree.

Our algorithm is a decentralized algorithm with a sequential searching strategy. Requests send

buyers to search for resources. When a buyer finds a resource, it "captures" it. Each captured

resource traveis back to the origin of this buyer (or possibly some other buyer, if there is interference

between the processing of concurrent requests), so that the grant can occur where the request

originated.

When a request or buyer arrives at any node, any free resource at the node is captured. If there

are no free resources there, a buyer is sent to a neighboring node, determined as follows. Each node

keeps track of the latest estimate it knows, for the number of resources remaining in each of its

subtrees Each node sends a message informing its parent of each new request which has originated

within the child's subtree. The estimate which a node keeps for the number of resources remaining in

a subtree, is calculated from the initial placement of resources in that subtree, the number of requests

which are known to have originated within that subtree, and the number of buyers which the node has

already sent into that subtree. In order to decide on the direction in which to send a buyer, a node

uses the following rules. First, it never sends a buyer out of its subtree if it estimates that its subtree

still contains a resource. Second, it only sends a buyer downward to a child if it estimates that the

child's subtree contains a resource. Third, if there is a choice of child to which to send the buyer, the

node maes a nondeterministic choice. (Later, we will constrain this decision to a probabilistic

choice using a particular random choice function. This constraint will be important for the complexity

analysis. but is not needed for the correctness of the algorilhm.)

it is easy to see that any subtree which a node considers to contain no resources, actually

cnilt:imes no r.e;ukrces ilus. no buyur is ever sent out Of a subtree actually containing a resource.

On !ha; othi,,r hmd, the perceived information about the availability of a resource in a child's subtree

can he an overestifiate, in case of interference among concurrent requests.

EXAMPLE

Suppose thait request A entors at the rnode shown below, and its buyer travels upward until it

reaches an ancestor that perceives the availability of a resource in one of its subtrees. Then the

hu1 r travels downward tow.ard that resource. Shortly hlore A's buyer iaches the resource,

,.rnthtr rUq , .1 IJ ,irrives Lit tlht node hown. S p 1os 3' buyer reache; the riur m I t es

- . ... .• . . . . . . . . . . . .. .. ,. ,..=.ia..,.. _. .. ', ....-.- 'a.... 'at.
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it before A's buyer does. When (or before) A's buyer finally arrives at the resource's location, it will

encounter the information that the resource is no longer there. Then A's buyer will be sent upward,

backtracking in its search for a resource.

A B

Figure 1

Although such interference can cause backtracking, the buyer will eventually find a resource if

one exists. This is because no buyer ever leaves a subtree actually containing a resource.

Several optimizations are incorporated into the algorithm, as follows.

1. Buyers, unlike requests, need not be uniquely identified. Instead, each node keeps track of the

number of buyers received and sent and the net flow of buyers over each of its incident edges.

Captured resources then travel in such a way as to negate net flow of buyers, and because a buyer

will eventually leave a subtree which does not contain a resource.

2. Buyers can travel "discontinuously". Assume node v sends a buyer to a child node w, thinking

that there is an available resource in w's subtree. Assume that, soon thereafter, v receives a message

from w, informing v of an arrival of a new request in w's subtree, and implying that v's previous

supposition of an available resource was false. Then v knows that w will eventually send some buyer

back up to v, at which time v should send the buyer in another direction. Since v knows this will

eventually occur, v need not actually wait for the buyer to arrive from w; it can create a new buyer and

send it in anticipation of the later return of the first buyer. Since the first buyer will not find any free

resources in the subtree, this extra parallelism does no harm. In fact, with this optimization, it is no

longer necessary for w to return the buyer at all, since v must ignore it when it returns to it in any case.

3. If each node knows how many resources were initially placed in each of its children's subtrees,

then it is not even necessary for explicit buyers to be sent upward at all! All that is necessary is for

nodes to send "ARRIVAL" messages upward to their parents, informing them of the arrival of new

requests in their subtree. The parent is able to deduce the number of resources which the child

would like to have sent down (i.e. the number of buyers emanating from the child's subtree) from the

initial number of resources in the subtree, the number of arrivals in the subtree and the number of

buyers already sent down into the subtree. We will say more in a moment about how this deduction is

made.
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If information about newly-arrived requests (in the form of "ARRIVAL" messages) only flows upward

in the tree. there is no way that a child can deduce that its parent would like it to send a resource

upward. Thus, it is still necessary to send explicit buyers downward. Let us designate these explicit

downward buyer messages as "BUYER" messages. Thus, the algorithm only uses two kinds of

messages to search for resources: "ARRIVAL" messages flow upward to inform parents about new

requests, and "BUYER" messages flow downward to inform a child that its parent would like the child

to send up a resource

The precise deduction which a parent can make about the number of buyers emanating from a

child's subtree is as follows.

Let a be the number of "ARRIVAL" messages which have been received by the parent from the

child Let b be the number of "BUYER" messages which have been sent by the parent to the child.

Let p be the number of resources initially placed in the child's subtree. Then the number of buyers

perceived as emn.iIng from a chijd's subtree is max(a + b - p, 0). This number is called the estimate
of "vii kual buyerS' em iinn - -)ro the subtree.

That is. if thu -a l number of 'AR1RIVAL" and "BUYER" messages indicated above is no greater

than the inttia placement, no huyers are perceived as emanating from the subtree. On the other

hand, if ths tota1i7, gre-ater. then tn excess is perceived to be the number of buyers.

Analogous!y. the 6itld node dduces an estinate of the number of "virtual buyers" it has sent out

of is uLhtree. as follo,,s. Let a be the number of "ARRIVAL" messages which the child has sent to its

part.-nt L.-t b be tiie number of "BUYCR" messages which have been received by the child from its

x.2rent. Iet p be the number of resources initially placed in the child's subtree. Then the number of

L~u rs 'he child perceives that it has sent out of its subtree (also called the estimate of "virtual

K., ors n xnt ot.t of the subtree) = n.a(a - b -p. 0). Because of message delays, the child and the

pre t m.n0y d'ffer on their estimlites of the number of vJiltual buyers.

in order to mat the aCtuhat1 cjrints to specific requests. it seems necessary that each spccific

idetified re2source "travel" to a point oi request origin, in order to get properly paired with a request.

Thl, trve reuuir,_s a third kind of message to be sent around, namely, a specific "captured

r.:, arc. '. The tiiljorithri which sc lds resources around is particularly simple resources are just

!n '.I.: " I' - ne7al'- the net flowv of buyers. This part of the algorithm executes

v.,- ' t i lt rio effect on, the searching part.
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2.2. Formal Description

In this subsection, we present a program implementing the algorithm described above. A sketch

of a correctness proof is presented in the next section. Primarily, the proof consists of showing the

correctness of the invanant assertions made at various points in the program. The reader rray wish to

examine the proof while reading the program.

We assume that the network is described by a rooted tree T. For uniformity, let the root of T have

an outgoing upward edge. (Messages sent along this edge will never be received by anyone.) We can

then write a single program for all the nodes of T, including the root.

Let V denote the set of vertices of T. Let RESOURCES(v) denote the resources placed at vertex v,

for each v C_ V, and let PLACE(v) = IRESOURCES(v) for all v. Let REQUESTS(v) denote the requests

arriving at v. We assume that all the sets RESOURCES(v) and REQUESTS(v) are finite. Let

PARENT(v) CHILDREN(v), DESCENDANTS(v) and NEIGHBORS(v) denote the designated vertices

and sets of vertices, for vertex v.

The kinds of messages used are "ARRIVAL", "BUYER" and messages corresponding to specific

captured resources.

Program for node v, v C V:

In the program for node v, we use RESOURCES as a shorthand for RESOURCES(v), and similarly

for the other notition above.

It i, conv . + ,rit to think of the state of v as consisting of "independent variables" and "dependent

v;riables". The independent variables are just the usual kind of variables, which can be read and

~;'j ,ne to, Th,, 1cndiit wriables are virtual variables whose values are defined in terms of the

n,e!tnndc-, t vafibles. these values can be read, but riot modified. We can think of the reading of a

,!,rlenrt va:iih)!e as shrrthand( for a read of several independent variables, together with a

, l tUI <,i~ n of the !unction givi'. the dependency.

Independ-nt Variables

'I .'.'Li.'St that originated at v,

f ,, that oriinated at v, which are still unsatisfied,

i i r , f. r c, ESOURCES that have not yet beer "captured" by requests,

, AI f r "'r , ,rourceon its way back to a request,

1%, v (P "i(' S for the numher of "ARRIVAL" messages received from each of
,;~ ~~~ ~ ~ iitr, !iI ~ :.) ,,, .t r.-,,pf-, tivcly,
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s E bins, then
if bin s is nonempty,
then subtract 1 from the number of resources in s
else if some bin is nonempty then

[SELECT the first unused element of c describing a nonempty bin, t;
subtract 1 from the number of resources in t]

X, then
if some bin is nonempty then

[SELECT the first unused element of c describing a nonempty bin, t;
subtract 1 from the number of resources in t]

Define SELECT(S,c,p,i) to be the number of times bin i is SELECTed during the course of

processing S on c and p. (Note that a bin is only said to be SELECTed when the choice sequence is

used to choose it, and not when it is explicitly chosen by the script. Define choice(S,c,pj) to be equal

to k provided that when S(j) is processed on c and p, the kth element of c is used to select a bin. (If no

element of c is used, then choice(S,c,p,j) is undefined.) It follows that SELECT(S,c,p,i) = I{J:

c(choice(S,c,pj)) = ill,

For any script S, let binsequence(S) denote the subsequence of S consisting of bin numbers.

Script S is said to dominate script S' provided that: (a) T = T', where T = binsequence(S) and T' =

binsequence(S'). (b) the total number of X's in S is at least as great as the total number o,: X's in S',

and (c) for each i, the number of X's in S preceding T(i) is at least as great as the number of X's in S'

preceding T'(i). The main result of this section is that, if S dominates S', then SELECT(S,c,pi) >

SELECT(S',c,p,i) for all c, p and i.

We say that an interchange of two consecutive elements of a script S is !egal provided that the

first element of the pair is an X. We say that a script S' is reachable from a script S if S can be

transformed to S' by a series of legal interchanges. Note that S dominates all scripts S' reachable

from S. moreover, if S dominates S'. then S' can be augmented with some suffix of X's, to a script

which is reachable from S.

Lemma 6: For any scripts S and S' such that S' is reachable from S, and for any
dhoimce sequence c, placement function p and bin i,

S[-LFCT(S,c.pi) SELECT(S',cp,i).

Proof: We prove this lemma by showing that if S' is reachable from S by a single legal

ntrchange. then the inequality holds. The lemma follows by induction on the number of
teqil interchanges.

Fix! S, c. and p. As'imn e that S' is obtained from S by interchanging S(j) = X with
:"(I t- I) If S(i ,- ) - X, thei S S o the res:ult is obvious. So assume S( + 1) s C
b Cn hrP s ire thre ,r S1eS.

C, s:e 1 Pr1 s i:; eimpty after procEssing S( 1).. S(j 1) on] c and p.
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Lemma 4: bnumT,p = vbnumT,p.

Proof: We sketch the argument for fixed r and C. For a particular edge e. let ae denote
the number of request arrivals below e, be denote the number of "BUYER" messages sent
downward along e, and Pe denote the number of resources placed below e, in the
execution for r and C. Since all resources get matched to requests, we must have ae + be
> Pe' so that the number of virtual buyers sent over edge e is exactly max(ae + be- Pe' 0)
= ae + be-P e '

Now consider all the edges at any particular height h in ,he tree. Since all resources

and requests are at the leaves, and the branches are all of equal length, it is clear that

y heigh:T(e) h ae = total(p) = T ( Pe'

Therefore,

b( =X (a + b-p P).
height1 (e)- h e heightT(e) = h e e e

Th! , .the numbers of buyers and virtual buyers sent over edges of height h are equal.

Since this is true fur all h, the result follows.I

Theorem 5: cOStr p _(bnumTp).

Proof: Immodrate frofn Lemmas 3 and Restriction 3.1

lhus in 3r,.,'r to obtain an upper bound on costTp(f), it suffices to prove a bound for bnumt,1 (f).

4.4. A Combinatorial Result

h's u[,,rct:n contains a kfy combinatorial result which will be used in the subsequent analysis.

, ,avior of the algcrithm at a single node v. The children of v are modelled as a set of

', ,foLr r-s. (Here. we do not concern ourselves about the tree structure beyond the children.)

Li, . , ti C, , ,', ueic vri Each bin s is initialized to contain a number p(s) of resources.

Ihe trrv/c! rnessagjus at v is described by a script, S. A script is a finite sequence of symbols,

!ci (-f .,hich s eoither a bin number s or an "X". A bin number represents the arrival of an

-thiIVAL ,'..sage from the specified child. The symbol X represents the arrival of a "BUYER"

r it- 1j,2 from v- parent.

Vh,2 crcc',;,i, t of script S on c and p, is as follows. The elements of S are processed

Ir > (i) is:



21

Lemma 3: (a' searchcost <bnumT + vbnumT~.
Tp T.p Tpp

(b) returncost rp = gnumT p'

(c) gnum Tp <_ bnumTp + vbnumT,p .

(d) coStTp _ 2[bnumTp + vbnumT,p].

Proof: (a) This inequality is true because buyers continue to make progress up and
down the edges of the tree; all time used by the algorithm is occupied by the transmission
of appropriate buyer and virtual buyer messages. The reason that we have an inequality
rather than an equation here is that buyers are permitted to travel "discontinuously", as
described in Section 3.

(b) This equation is true because captured resources travel continuously via captured
resource messages.

(c) We must show that each captured resource message always moves in such a way
as to "negate" a buyer or virtual buyer message. This is a bit tricky to argue, because of
the discrepancies between estimates at opposite ends of an edge.

A captured resource only moves over an edge if the net flow of buyers into the node on
that edge, as estimated at the near endpoint, is positive. By moving over that edge, the
captured resource negates an incoming buyer or virtual buyer along that edge, as
estimated at the near endpoint. Because of the assumption that all messages take exactly
time 1, by the time the captured resource reaches the far endpoint, the negated buyer or
virtual buyer is also counted in the estimate of outgoing buyers and virtual buyers at the
opposite endpoint. The arrival of the captured resource at the far endpoint can thus be
regarded as negating an outgoing buyer or virtual buyer at the far endpoint as well.

(d) Straightforward by Lemma 2 and (a).(c).I

Now, we introduce an additional restriction, to remain in force for the remainder of Section 4.

Restriction 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

As usual, the following lemma is intended to hold for all valid domains of definition.



20

Let f denote an arbitrary probability density function whose domain consists of positive reals. Extend

the domain of the function costT.p to the set of such functions by defining costTp() to be the expected

value of costT,p(r), where r is of length total(p), with its successive locations chosen independently

using the distribution TT' and its successive interarrival times chosen using f. That is, at the time the

algorithm begins, and at the time of each request, the probability that the next arrival occurs exactly t

units later is f(t). We will be primarily interested in this cost, costT,p(f).

We define searchcostT,. (r), searchcost P(f) , etc., analogously to our earlier definitions.

The following claim is true for all domains for which the definitions are valid.

Lemma 2: costT p = searchcost T,p + returncostT,p .

Proof: Straightforward.I

Next, we will relate the given cost measures to the total numbers of various kinds of messages sent

during the execution of the algorithm. Note that during the execution of an algorithm, the estimates

of "BUYER" and virtual buyer messages sent along an edge can be different at the two ends of the

edge. However, after the entire execution of the algorithm is completed, the discrepancy disappears,

so that the following definitions are unambiguous. Let bnum TP(r,C) denote the total number of

"BUYER" messages sent on all edges during the execution of the algorithm on r using C. Let

vbnum Tp(r,C) denote the total number of virtual buyer messages sent on all edges during the

exUcution of the algorithm on r using C. Let gnumTp(rC) denote the total number of captured

resource messages sent on all edges during the execution of the algorithm on r using C. As before,

define bnum ,p (r), bnumTp(f) , etc.

Because of the fact that message delivery time is assumed to be exactly 1, there are some

relationships between the measures describing time costs and the measures describing numbers of

messages. The following lemma describes a set of relationships among the various measures. Note

that all the statements are true over all possible domains of definition.

" --. ,, :- -i,:,% -. '..'-.,- . 1 '. -' -. .7 - 7 . .- .-. - .
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Restriction 2 has the effect of restricting the executions under consideration; for e<ample, all

messages between any two nodes are pipelined - they arrive in the order in which they are sent.

While we would like to understand the behavior of the algorithm in the presence of variable message

delivery times, such analysis appears to be more difficult.

4.3. Cost Measures and Preliminary Results
A request pattern, r, is a finite sequence of elements of vertices T x R + whose second components

are monotone nondecreasing. A request pattern represents the sequence of requests that occur,

their locations and times. If r is a request sequence, then length(r) denotes its length.

A choice sequence, c, for v E internalT is an infinite sequence of elements of childrenT(v), with

infinitely many occurrences of each child. If C = {cv} is a collection of choice sequences, one for

each v E internalT, then C can be used in place of probabilistic choices in an execution of the

algorithm, as follows. Each internal node, v, makes choices among its children by choosing the first

unused element of cv satisfying the inequality PLACE(descT(S)) > ARRIVALS(s) + BUYERS(s). That

is, v chooses a child, s, for which v thinks there are still remaining resources in s's subtree.

Let p be a placement for T. Let r be a request pattern, and C = {cv) a collection of choice

sequences, one for each v E internal1 . Then cost T, (r,C) is defined to be the total time from requests

to corresponding grants, if requests arrive according to r and C is used in place of probabilistic

choices. (With suitable conventions for handling events which happen at the same time, the

execution, and hence the cost, is uniquely defined for fixed r and C.)

The cost measure defined above can be broken up into two pieces, as follows. Let

searchcost Tp (r,C) be the total of the times from requests to corresponding captures of resources, if r

and C are used as above. Let returncostT.(r,.C) be the total of the times from captures to

corresponding grants of resources.

Now we incorporate a probabilistic construction of (* into the cost measure. If r is a request

pattern, let cost ..p (r) denote the expected value of costT.1(r,C), where C is constructed using q*r'

(That is. for each v C internal1 , the sequence cv is constructed by successive choices hom among

chldren(v), choosing s with probability qr I(descI (S))/q)T(descT(S)), where S = childron!(v). Among

the sequences thereby generated are some for which it is not the case that each child occurs

infinitely often. However, these sequences form a set of measure 0, so that we can ignore them in

calculating the expected cost measure.) We claim that costTp (r) is exactly the expected total time

horn requjc!sts to (Ir;mnt,, prrvidh;( the algorithm is run in the normal way, usng pro)abih.itic choices.

Thrt is, the two stralegies of constructing choice sequences independently of the algrithrn and

carrying out th,, ' probahilistic choices on-line giv identical results.

i.-----. '
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If v is a vertex of T, let heightT(v) denote the maximum distance from v to a leaf in its subtree. If e is an

edge in T, then define heightT(e) to be the same as heightf(v), where v is e's upper endpoint. Let

height T denote heightT(rootT),

A placement for T is a function p: verticesT --- N, representing the number of resources at each

vertex. We write total(p) for p(verticesT), the total number of resources in the entire tree. We say that

p is nonnull provided total(p) > 0.

A weighted tree, T, is an undirected, rooted tree with an associated probability density function,

'T' on the leaves of T, such that qT(V) > 0 for all leaves v. (This assumption is made for technical

reasons, so that we can normalize probability functions without danger of dividing by 0.) If T is a

weighted tree, v E internalT, and S is a nonempty subset of childrenT(v), then let randomT s denote the

probability function which returns s E S with probability PT(descT(s))/qT(deSCT(S)). Thus, randomT s

returns s with probability proportional to the sum of the probability function values for the

descendants of s.

4.2. Initial Restrictions

For the remainder of Section 4, we assume that the following two restrictions hold.

Restriction 1:

T is a weighted tree, and the nondeterministic choice step in Part (2) of the algorithm uses a call to

randomTS.

Restriction 2:

Delivery time for messages is always exactly 1.

Restriction 1 describes a particular method of choosing among alternative search directions. This

method does not use all the information available during execution, but only the "static" probability

distribution information avilable at the beginning of execution. One might expect a more adaptive

choice method to work better; however, we do not know how to analyze such strategies.
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be the number of captured resource messages which have been sent from w to v but have
not yet arrived. (Of course, neither v nor w actually "knows" the value of this variable.)
For any time. t, after the NETBUYERS(w) and REQUEST values have stabilized, any node
v. and any w E NEIGHBORS(v), let A(v,w,t) be the value of NETBUYERS w) -

NETGRANTS(w) + MESSAGES(w) at v at time t. Note that A(v,w,t) = -A(w,v,t) in all cases.
Let SUM(t) denote Y JA(v,w,t)J. We claim that any event which involves the receipt of a
captured resource message does not change SUM(t), while any event which involves the
sending of a captured resource message decreases SUM(t). Therefore, captured resource
messages will not be sent forever: they will eventually subside, at which time they must
have found a matching request.

First, consider an event involving the receipt of a captured resource, by v, from w. The
only term in the sum which is affected is A(v,w,t). The receipt of the messages causes v's
values of MESSAGES(w) and NETGRANTS(w) both to decrease by 1, so that A(v,w,t) is
unchanged. Therefore, SUM(t) is unchanged. Second, consider an event involving the
sending of a captured resource, by v, to w. The only terms in the sum which are affected
are A(v,wt) and A(w,vt). At time t just prior to the sending event, it must be that v's value
of NETBUYERS(w) . NETGRANTS(w) > 0, which implies that A(v,w,t) > 0. The result of
sending the message is to increase NETGRANTS(w), which means that A(v,w,t) gets
decreased by 1. Therefore, IA(v,w,t)l gets decreased by 1. Thus, also, IA(w,v,t)l gets
decreased by 1, so that SUM(t) gets decreased by 2.1

4. Monotonicity Analysis
The rest of the paper is devoted to an analysis of the time requirements of the algorithm.

Specifically, we measure the sum of the times between requests and their corresponding grants. For

the purpose of carrying out the analysis, certain restrictions will be made. These restrictions will be

introduced as needed.

We begin with some basic definitions. Next, we introduce two restrictions which are needed

throughout the analysis. Then we define and categorize the complexity measures of interest. We

then prove a basic combinatorial result, and use it to prove the monotonicity of the number of

"BUYER" messages as a function of interarrival time. Finally, we show that the expected running

time of the ,algorithm is bounded by the expected time for the sequential case of the algorithm.

4.1. Definitions

Let N denote the set of natural numbers, including 0. Let R + denote the set of nonneg tive reals.

If f is a numerical function with domain V, then extend f to subsets of V by f(W) = X v wf(V).

Let T be a rooted tree. We write vorticesr , i /ntrnalT, and leavesT to denote the indicated sets of

vertices of I. Let root7 denote the root. If v C vertices r , we write desc T(V) for the set of ve-tices of T

which are descendants of v (including v itself), parentr(V) for v's parent in T, childrenT (v) for v's

children. and nelghhors, ( ) for children r(v) U {parent r(v).
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This expression is, in turn, equal to

PLACE(DESCENDANTS) - IsECHILOREN PLACE(DESCENDANTS(s)),

= PLACE(v) = ICAPTUREDI.

Thus, NETFLOW < ICAPTUREDI, a contradiction.

Thus, we have shown that it is always possible to service an excess request.

Next, we must show that NETFLOW = )CAPTURED1 between Parts 2 and 3 of the code.
This means that after servicing any excess request, there is no remaining request to be
serviced. Previous to Part 2, ICAPTUREDI :_ NETFLOW < ICAPTUREDI + 1. If
NETFLOW was equal to ICAPTURED1 + 1, then the body of the conditional was executed.
If the first case of the conditional held (i.e. the case for FREE * 0), then ICAPTUREDI is
increased by 1, so the invariant is restored. Otherwise, a "BUYER" message was sent to a
child, s, for which PLACE(DESCENDANTS(s)) - ARRIVALS(s) > BUYERS(s). This caused
NETBUYERS(s) to increase by 1, thereby increasing the value of NETFLOW and restoring
the invariant.

The third portion of the algorithm manages the travel of captured resources back to
requests. First, note that there can be only one captured resource assigned to GRANT at
any node in a single step, since the two assignments to GRANT cannot both be executed
during a single step. If the message is a captured resource, then no progress is done until
the clause contains the second grant. Otherwise, this clause is skipped. We must argue
that such a neighbor exists in this case.

Assume not. Then NETBUYERS(s) < NETGRANTS(s) for all s E NEIGHBORS. Now,
NETFLOW = ICAPTUREDI, so that ICAPTUREDI = IREQUESTSI + NETBUYERS,

< IREQUESTS1 + NETGRANTS,

= IREQUESTSI + )CAPTURED) - ISATISFIED- 1

IACTIVEI + ICAPTUREDI- 1. Therefore, 1 < IACTIVEI, a contradiction.

Thus, we have checked that the key assertions hold and the code can be executed at
all points. We have claimed (and tried to argue) that the algorithm follows the strategy of
the preceding section, in setting up a flow of buyers from requests to resources.
Eventually, the values of al the NETBUYERS(w) variables will stabilize, and the values
taken on by corresponding NETBUYERS(w) variables at either end of a single edge will be
negations of each other. (We use the fact that there are only finitely many requests here.
Eventually. no further requests will arrive, so no additional "ARRIVAL" messages will be
sent. There is a bound on how many "BUYER" messages will be sent downward along
any edge. Therefore, there are only finitely many total "ARRIVAL" and "BUYER"
messagus which get sent, so that eventually, they will all be delivered.) Similarly, all the
REQUESTS variables will eventually stabilize.

Finally, we must consider the travel of captured resources to request origins. Define a
new variable, MESSAGES(w), at node v, where w C NEIGIBORS(v). Its value is drined to

S.
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By the ARRIVAL invariant, this is equal to

PLACE(DESCENDANTS) PLACE(DESCENDANTS(s)) "tECHILDREN, t~s

PLACE(DESCENDANTS(t)),

= PLACE(v).

Thus, NETFLOW > PLACE(v). However, the original invariant says that NETFLOW =
ICAPTUREDI, and ICAPTURED1 is never permitted to be greater than PLACE(v), a
contradiction.

We have thus shown that ICAPTUREDI < NETFLOW < ICAPTUREDi + 1 at the point
where that claim is made. Thus, there is at most one excess request that requires
disposition. In the case where there is an excess request, node v must service that request
in its subtree. There are two possibilities: either v can service the request locally, or it
cannot. If FREE t 0, then a free resource is captured to service the excess request. If
not, then a "BUYER" message must be sent down into some subtree. We must show that,
in the event FREE = 0, it is possible to send such a "BUYER" message. That is, we must
check that S * 0 at the place where that claim is made.

Assume not. We will make some deductions about the values of the variables at the
point where that claim is made. At that point, we know that FREE 0, so that PLACE(v)
= ICAPTUREDI. We also know that

NETBUYERS(PARENT) _ PLACE(DESCENDANTS) ARRIVALS(PARENT), by
definition of NETBUYERS.

Then

NETFLOW = IREQUESTSI + NETBUYERS(PARENT) + IsECHILDREN NETBUYERS(s),

< jREQUESTSI + PLACE(DESCENDANTS) ARRIVALS(PARENT) +
X CHILRENNETBUYERS(s).

Because S = 0, it follows that

PLACE(DESCENDANTS(s)). ARRIVALS(s) < BUYERS(s) for each s E CHILDREN.

Therefore,

NETBUYERS(s) = .(PLACE(DESCENDANTS(s))- ARRIVALS(s)).

" "1 hus, the right.hand side of the next.to-last inequality is equal to

IREQUESTSi + PLACE(DESCENDANTS) ARRIVALS(PARENT)
.sCCHiLDRFN(PLACE(DESCENDANTS(s))- ARRIVALSts)).

.• . . ... .. . .. .. . . .. .

"- - . ' . . - "- ' . -" . " . - ] , -- . -', - . V . . ..E,-C- .- - :, . " - - - "R F N"

1%% -," .-. % .,= 'lb" ' " .*m"
"
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The second portion of the algorithm manages the disposition of any excess flow of
requests into the node. We must first check that the number of excess requests after the
initial processing of a single message can only be 0 or 1. That is, we must verity that
ICAPTUREDI < NETFLOW < ICAPTUREDI + 1 between Parts 1 and 2 of the code.

A quick check of the cases shows that the only way this could fail to be true is it M
"ARRIVAL" from a child s, and the result of processing M causes NETBUYERS(s) to

remain unchanged, while NETBUYERS(PARENT) decreases. In this case, we can deduce
some relationships among the values of v's local variables at the beginning of the node

* - step.

* For every t E CHILDREN, it must be the case just before execution of Part 1 that

*NETBUYERS(t) min(PLACE(DESCENDANTS(t)) - ARRIVALS(t), BUYERS(t)),

so that

-NETBUYERS(t) PLACE(DESCENDANTS(t)) - ARRIVALS(t).

-6 That is,

NETBUYERS(t)> ARRIVALS(t) - PLACE (DESCENDANTS(t)).

Since NETBUYERS(s) remains unchanged, then it must be the case that

*NETBUYERS(s) PLACE(DESCENDANTS(s)) - ARRIVALS(s).

(If they were equal, then PLACE (D ESCEN DANTS) (s)) - ARRIVALS(s)
min(PLACE(DESGENDANTS(s)) - ARRIVALS(s), BUYERS(s)), and an increase to
ARRIVALS(s) would cause a change to the minimum, thereby changing NETBUYERS(s).)

Therefore, NETBUYERS(s) ARRIVALS(s) - PLACE (DESCE NDA NTS(s)), and so

NETBUYERS(s) > ARRIVALS(s).- PLACE (D ESCE NDANTS(s)).

Since NETBUYERS(PARENT) decreases, it means that NETBUYERS(PARENT)
PLACE(DESGENDANTS) - ARRIVALS(PARENT).

* .Now consider NETFLOW =IR[QUESTS1 + NETBUYERS. The right side is equal to

IREQUESTSI + NETBUYERS(PARENT) + NETBUYERS(s) + I tCCHILDREN,
t# NETBUYERS(w).

By previous results, this is, in turn, strictly greater than

IREQUESTS1 + PLACE (DESCENDANTS) - ARRIVALS(PARENT)

+ ARRIVALS(s) - PLACE (DESCENDAN TS(s))

4- XtECGILDRI:N. I-A ARRIVALS(t) - PLACE (DE SCEN DANTS(t)).



13

(Part 3)

/* Process M if M is a captured resource message. /

If M is a resource from w then
[NETGRANTS(w) NETGRANTS(w) - 1
GRANT := M]

/* Send a captured resource, if you have one, toward a request origin. /

If GRANT * 0 then

/* NETGRANTS = ICAPTUREDI - ISATISFIEDI 1. "/

[if ACTIVE # 0 then
then

[choose r E ACTIVE
ACTIVE := ACTIVE - (r}
output (r,GRANT)]

else
[choose w E NEIGHBORS with NETBUYERS(w) - NETGRANTS(w) > 0

0 send GRANT to w
NETGRANTS(w) NETGRANTS(w) + 1]

GRANT 0]

3. Correctness of the Algorithm
Theorem 1: The given algorithm solves the resource allocation problem.

Proof: We claim that the node program given above implements the strategy
described informally in the previous section. We do not give a proof of this
correspondence here. Rather, we argue correctness of the key assertions of the program
and give informal arguments for the rest of the proof of correctness of the algorithm.

,. The first portion of the algorithm, the initial processing of the first three kinds of
messages, simply sends the appropriate "ARRIVAL" messages and records the proper

changes to the various sets and counters.

For any of the three kinds of messages, node v is finding out about a new request that
needs to be processed. In some cases, v will need to do more to help process the request.
If the message is an "ARRIVAL", and node v thinks that the corresponding request can be
serviced in the sender's subtree, then v has no further work to do. If the message is a
request or an "ARRIVAL", and if node v thinks that it is impossible to service that request
in v's subtree, then the "ARRIVAL" message sent upward by v will be counted by v's
parent in its estimate of virtual buyers emanating from v's subtree. Thus, after sending this
"ARRIVAL" message upward, v will have no further work to do. Also, if the message is a
"BUYER" and v thinks that it is impossible to service the request in v's subtree, then v
need not do anything more. However, if v thinks that the new request can be serviced in its
subtrce, then it has some further work to do, in the second portion of the algorithm.

r .
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-/* The following invariants hold at the beginning of any node step.

NETFLOW = JCAPTUREDI.
ARRIVALS(PARENT) = IREQUESTS1 + Yw E CHILDRENARRIVALS (w )] '

GRANT = 0.
* . NETGRANTS = ICAPTURED1 - ISATISFIEDI. "

' "(Part 1)

*If M is a request then
[REQUESTS := REQUESTS U (M}
ACTIVE := ACTIVE U (M}
send "ARRIVAL" to PARENT

- .ARRIVALS(PARENT) :=ARRIVALS(PARENT) + 1]

If M = "ARRIVAL" from w then

[ARRIVALS(w) := ARRIVALS(w) + I
send "ARRIVAL" to PARENT
ARRIVALS(PARENT) := ARRIVALS(PARENT) + 1]

If M = "BUYER" then BUYERS(PARENT) := BUYERS(PARENT) + I

* /* Now slightly revised invariants hold:
ICAPTUREDj < NETFLOW < ICAPTUREDI + 1.
ARRIVALS(PARENT) = IREQUESTSI + I E CHILDREARRIVALS(w)] "

GRANT = 0.
NETGRANTS = ICAPTUREDI ISATISFIEDI. "/

(Part 2)

/* Next, if there is an excess request, service it. *1

If NETFLOW = ICAPTUREDI + I then

if FREE 0
then
[choose s E FREE
FREE := FREE - (s}
GRANT := Ss]

else
[1* Send "BUYER" down into a subtree. "/

S := {s E CHILDREN: PLACE(DESCENDANTS(s)) > ARRIVALS(s) + BUYERS(s)}

/ S 0 0. "

choose NEXT E S
send "BUYER" to NEXT
BUYERS(NEXT) : -BYIRS(NEXT) + 1]

/* NEIFLOW = ICAPUR[DI. */

...--0i ?'.. . ?. " -.,..- .--- .? .- ... ...? ''-'?,. :,. ., ,_ , . . , ."."- '" " - i" ; "'" i ''' 2 "" i .. .. -. -, , - . -'' " " '" " ? '' i " i" ~". .,



Another way to understand the equations is as follows. Again, consider the first equation, for w =

PARENT. Then NETBUYERS(w) = BUYERS(w) - VIRTBUYERS(w), where the latter quantity is the

number of virtual buyers which v estimates it has sent to its parent. Using the expression which was

derived in the preceding subsection for the number of virtual buyers, we see that NETBUYERS(w) =

BUYERS(w) - max(ARRIVALS(w) + BUYERS(w) - PLACE(DESCENDANTS),O). This is equal to

min(PLACE(DESCENDANTS) - ARRIVALS(w),BUYERS( . , as needed. Again, the other calculation

is similar.

The remaining dependent variables are:

NETBUYERS, for the total of all the NETBUYERS(w),

Dependency: NETBUYERS = 1 W E NEIGHBORSNETBUYERS(w).

NETFLOW, for the net flow of buyers into v,

Dependency: NETFLOW = IREQUESTSI + NETBUYERS.

NETGRANTS, for the net flow of grants out of v,

Dependency: NETGRANTS = .w E NEIGHBORS NETGRANTS(w).

The following code is executed in response to the receipt of any message or request, M. The first

part of the code does initial processing of messages, updating estimates and sending any required

"ARRIVAL" messages. After the first part of the code, there will be at most one excess request left at

the node, and if there is such a request left at the node, then the node is able to service that request,

either locally or by sending a buyer into a subtree. In the second part of the code, the node decides

where it can service such an excess request, and it does so. (In case a buyer is sent down into a

subtree, the subtree is chosen nondeterministically. Later, we will refine the algorithm to use a

probabilistic choice at this point.) Finally, in the third part of the code, the node processes an excess

captured resource, if it happens to have one. (It cannot have more than one.) The node can have a

captured resource either because M was a captured resource message, or because (in the second

part of the code) the node itself captured a local resource. The resource is granted to a local request

if possible; otherwise, it is sent in such a way as to negate the net flow of buyers into the node along

some edge. It is always possible to process such a captured resource in one of these ways.

Vi

0 . ... . _._. " " .- . . .,- .• .,_•, ,. .- , _ . .- -: . . -< ,- , ." ._ - q .. . .-..- . -. ,. ,., i, ,~ ii --- ;
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BUYERS(w), w C NEIGHBORS, for the number of "BUYER" messages sent to v's children and

received from v's parent, respectively,

NETGRANTS(w), w C NEIGHBORS, for the net flow of captured resources out of v to each of its

neighbors,

NEXT, a temporary variable which can hold a vertex.

Initialization of Independent Variables

REQUESTS ACTIVE = 0, FREE = RESOURCES, and all other variables are 0.

Dependent Variables and their Dependencies

CAPTURED, for the set of resources in RESOURCES which have been captured,

Dependency: CAPTURED = RESOURCES- FREE.

SATISFIED, for the set of requests in REQUESTS which have been satisfied,

Dependency: SATISFIED = REQUESTS - ACTIVE.

NETBUYERS(w), w C NEiGHBORS, for the net flow of buyers and virtual buyers into v from each

-- neighbor. (Recall the definition of "virtual buyers" from the last subsection.)

Dependency: If w = PARENT, then NETBUYERS(w) = min(PLACE(DESCENDANTS)

ARRIVALS(w), BUYERS(w)). If w E CHILDREN, then NETBUYERS(w)

-min(PLACF(DESCENDANTS(w)- ARRIVALS(w), BUYERS(w)).

These two equations can be understood as follows. Consider, for example, the first equation, for

w = PARENT. If PLACE(DESCENDANTS) - ARRIVALS(w) < BUYERS(w), it means that the placement

originally given for v's subtree is not adefquate for handling the requests (arrivals) which have

originated in v's subtree, together with the "BUYER" messages sent down from w. Therefore, all the

*ii)_ resources in V's subtree are allocated to requests, either within or outside of v's subtree. Whether the

net flow of buyers should be regarded as into or outward from v's subtree then depends solely on the

sign of PLACF(DESCENDAITS) ARRIVALS(w), without regard to the number of "BUYER"

messages received from w. That is, if PLACE(DESCENDANTS) < ARRIVALS(w), then the sign is

* negative and the net flow of buyers is outward from v's subtree, while otherwise it is inward; in either

case, its magnitude is equal to JPLACE(DESCENDANTS) . ARRIVALS(w)l. On the other hand, if

PLACE(DI3SCENDANTS) . ARRIVALS(w) >! BUYERS(w), then the placement originally given for v's

subtree i, adequate for handling both the requests which have originated in v's subtree, together with

the "BUYER" messages sent down from w. Therefore, the net flow of buyers is inward, and its

amount is just equal to HUYEflS(w), without regard to the other two values. The second equation is

S;imil;ir, with appropriate changes of sign.

0P.
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Then choices using c are made for both S and S' at both steps j and i + 1. Thus,
choice(S,c,pj) = choice(S',c,p,j) and choice(S,c,p,j + 1) = choice(S',c,p,j + 1). The
number of resources remaining in each bin after step j + 1 is the same for S and for S', and
therefore processing continues identically for S and S' after that point. Thus,
SELECT(S,c,p,i) = SELECT(S',c,p,i).

Case 2: Bin s contains more than one resource after processing S(1)...S(j-1) on c and
p, or else c(choice(S,c,pj)) is not bin s. (That is, the bin selected by the choice made at
step j is not bin s.)

Then the effect of the pair of steps j and j + 1 is the same for both S and S': a resource
is removed from bin s and a resource ,s removed from bin c(choice(S,c,pj)). (When
processing S, the choice from c occurs first, while when processing S', the explicit
removal from s occurs first, but the net effect is the same.) Subsequent processing of the
two scripts will be identical, and once again, SELECT(S,c,p,i) = SELECT(S',c,p,i).

Case 3: Bin s contains exactly one resource after processing S(1)...S(j-1), and
c(choice(S,c,p,j)) = s. (That is, the bin selected by the choice made at step j is s.)

In this case, the processing of S uses choices from c at both steps j and j + 1, because
the choice of s at step j removes the last resource from bin s, and so a choice must also be
made at step j + 1. The processing of S' does not need a choice at step j, although it is
forced to choose by the X at step j + 1. Thus, in both cases, step j removes the last
resource from bin s, while step j + 1 makes a choice using c. Then choice(S,c,p,j + 1) =

choice(S',cp,j+ 1): that is, the same entry in c is used at step j+ 1 in both cases. The
combined effect of steps j and j + 1 on the bins is the same for the two scripts. Subsequent
processing is again identical, so SELECT(S,c,p,i) = SELECT(S',c,p,i) for bin i s, and
SELECT(S,c.p,s) = SELECT(S',c,p,s) + 1 > SELECT(S',c,p,s).I

We can now state the main result of this section.

Corollary 7: For any scripts S and S' such that S dominates S', and for any choice
sequence c, placement function p and bin i,

SELECT(S,c,p,i) SELECT(S',c,p,i).

Proof: Let T be an augmentation of S' by a suffix of X's, such that T is reachable from
S. Then Lernma 6 implies that SELECT(S,c,p,i) > SELECT(T,c,p,i). But the latter term is
obviously at leabt as great i's SELECT(S',c,p,i).U

4.5. Expansior)s

In this subsection, we show that the number of "BUYER" messages sent is a monotone

nond(icroasing function of the intor rival time of the arrival distribution. W, do this by comparing

particular )airs of exccutions.

For n C N, let in] dnote {1. n). If a E n and r (v,,t) is a request pattern, then ar, the

expan:;iun of r by a, is tho request pattern (viat) That is, ar represents the request pattern in

S -
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which the successive requests occur at the same locations as in r, but in which the times are

expanded by the constant factor a.

We will compare executions for request pattern r and request pattern ar, using the same choice

sequence. We require a technical restriction, just to avoid the complications of having t. consider

multiple events occurring at the same node at the same time, in either execution. A requesi pattern, r,

is said to be a-isolated provided that no two requests occur in r at the same time, and provided that

the following holds. If t1 and t2 are two times at which requests arrive in r, where t1 ; t2 , ard if k is an

integer, then the following are true: (a) ti -t2 # 2k, and (b) t1 - t2 # (2/a)k.

The next lemma is crucial to our analysis. Its truth was first observed empirically, and then proved

analytically. It says that the number of "BUYER" messages sent during an execution cannot increase

if the request pattern is expanded by a constant which is greater than or equal to 1.

Lemma 8: If a > 1, and r is a-isolated, then bnumT,p (r,C) bnumm,p(arC).
Proof: Fix T, p and C. Let bsent(r,e,t) denote the number of "BUYER" messages sent

along edge e, in the execution for r (using T, p and C), up to and including time ,. Let
, brec(r,v,t) denote the number of "BUYER" messages received by vertex v, in the execution

for r, up to and including time t. Let arec(r,e,t) denote the number of "ARRIVAL"
messages received along edge e, in the execution for r, up to and including time t. We will
show the following:

Claim:

bsent(r,e,t + height,(e)) ! bsent(ar,e,at + heightT(e)) for all r, e, and t.

This is a stronger claim than required for the lemma, since it shows an inequality not
only for the total number of "BUYER" messages, but for the number along each edge, up
to corresponding times.

Fact 1: arec(re,t heightT(e)) = arec(ar,e,at + heightT(e)).

This is so because the number of requests arriving in request sequence r by time t is
the same as the number arriving in request sequence ar by time at, and messages just flow
up the tree at a steady rate.

The rest of the proof proceeds by induction on height(e), starting with heightr(e)
height r, and working downward towards the leaves.

Base: height _(e) = height T

In this case, e's upper endpoint is root.. The actions of root r are completely
determined by the "AHi- VAL" messages it receives, which are the same at correspo iding
time- in the Iwo executions, by Fact 1. The Claim follows.

lnductive step: hei(lht T (e) < heightT

0T
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Let v be the upper endpoint of edge e, and the lower endpoint of edge e'.

Fact 2: brec(r,v,t + heightT(v)) brec(ar,v,at + heightT(v)).

This is so because brec(r,v,t + heightT(v)) = bsent(r,e',t + heightT(v). 1) because all
messages take exactly time 1, = bsent(r,e',t - 2 + height (e')), <_ bsent(ar,e',a(t-2) +

'-. -height (e')) by inductive hypothesis, = bsent(ar,e',a(t-2) + 1 + heightT(v)), ,
brec(ar,v,a(t-2) + 2 + height T(v)) _ brec(ar,v,at + heightT(v)), since a(t°2) + 2 < at.

Now let us consider the situation from v's viewpoint. Node v is comparing two
executions, the first for r and the second for ar. All v sees is its incoming "ARRIVAL" and
"BUYER" messages, and v uses the same choice sequence in both cases. At
corresponding times in the two executions (i.e. t + heightT(v) in the first execution vs. at +
heightT(v) in the second execution), the same number of "ARRIVAL" messages have been
received along each edge (by Fact 1), and an inequality holds for the number of "BUYER"
messages which have been received (by Fact 2). We will show the needed inequality for
the number of "BUYER" messages sent by v along each edge, up to corresponding times.

Fix any time t. We compare the first execution up to time t + heightr(V) with the
second execution up to time at + heightT(v). We claim that this situation is modelled by

the combinatorial problem presented in the preceding subsection. First, we represent v's
inputs in each of the two executions by a script, i.e. a sequence of X's and "bins" the latter
of which are identified with children of v. An X models the arrival of a "BUYER", while s E

. bins models the receipt of a "ARRIVAL" message from s. (The fact that r is a-isolated
means that no two of v's inputs occur at the same time in the same execution, so a unique
sequence can be obtained in each case.) Let S and S' be the scripts for the first and
second executions, respectively (up to the indicated times). The claims in the preceding
paragraph imply that S' dominates S.

We claim that the processing described for the combinatorial problem models the
proc '.-ing carried out at v during execution of the algorithm. In particular, a SELECT of a
bin s, it it occurs, models the sending of a "BUYER" message to s and associated
-eduction of v's estimale of the number of resources remaining in s's subtree. With the
given correspondence between the combinatorial problem and the executions, the
conclusion of Corollary 7 translates immediately into the Claim.I

Lemma 9: If a > 1, and r is a-isolated, then bnumT,p(r) _ bnum .,p(ar).

Proof: By Lemma 8, taking expectations.I

-i . Define bnumT (af) to be the expected value of bnum (ar) , where r is chosen according to

and f. rt next theorem states that the expected number of "BUYER" messages is a monotone

nondecreasing function of the interarrival tine of the request distribution.

Theorem 10: (a) If a > 1, th, n bnumr,p(f) < bnum ,p(af). (b) If 0 < a < b, then
bnum1  (a.f) brium (b, f).

• .j o

- .
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Proof: (a) If a request sequence is chosen according to qT and f, then with probz.bility
1, it will be a-isolated. The result then follows from Lemma 9, by taking expectations over
r.

(b., Let g be the probability density function defined by g(at) = f(t). Since b/a > I, we
can a)ply Part (a) to b/a and g, obtaining bnumT (g) < bnum. (b/ag). But bnum -(g)

T p ''p~
- = bnumT p(af) and bnurnTp (b/ag) = bnumT p(bf yielding the result.n

4.6. Summary of Monotonicity Analysis

In this sE ction, we have made the following restrictions, repeated here for convenience.

Restric:ion 1:

T is a weighted tree, and the nondeterministic choice step in Part (2) of the algorithm uses a call to

randomT, S,

Restric:ion 2:

Delivery time for messages is always exactly 1.

Rest ric':ion 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

The maj r results we have proved in this section are that the expected response time is closely

approximatcd by the expected number of "BUYER" messages (Theorem 5) and that the expected

number of "3UYER" messages is a monotonic function of the interarrival time (Theorem 10). We can

combine thcse two results, obtaining the following:

Tt eo rem 11: cost n(f) 4 lima._.oobnump(af).

Proof: Consider what happens to the value of bnum (af) as a increases. This valueT, P

is moiiotonically nondecreasing, by Theorem 10, Also, it is bounded above, becau., e no
execution causs more "BUYER" messages to be sent on any edge than the numter of

- resou:cn.,s initi lly placed below that edge. Therefore, the limit exists. The result follows
irme(dliately from Theorems 5 and 10.1

That is, the xpect.d cost of the algorithm for any probability function, f, is bounded in terms of the

limiting cas,., of the algorithm, as the interarrival time approaches infinity. But note that as the

inter,arrival t me approaches infinity, the algorithm gravitates towards a purely sequential algorithm -

one in whicl' each request gets satisfied before the next one arrives. This kind of sequential algorithm

is arn''n-blle to analysi of al more traditional kind, the subject of thenext section of this paper.

,- -
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It seems quite surprising that the sequential case is the worst case. Our initial expectation was that

cases where considerable interference between requests occur would be the worst case. The

monotonicity theorem indicates that that is not so. Of course, we have made a few assumptions in

this section, most significantly the equal lengths of branches. It is quite likely that the sequential case

will not be the worst case for an algorithm using more general tree topologies. The analysis in this

more general case so far seems quite intractable, however.

5. Sequential Analysis
In this section, we analyze the sequential case of the algorithm. In the next section, we combine

the results into an upper bound for the entire algorithm. Once again, we allow arbitrary weighted

trees T, and allow r and p to be nonzero anywhere.

5.1. A Simplified Problem and Algorithm

The sequential case of the algorithm offers conssderable simplification over the concurrent cases.

" There is no interference at all, since each request arrives after previous requests have been satisfied.

- -. This means that all the estimates of remaining resources are completely accurate. In fact, the result is

equivalent to that of an algorithm in which all information is known globally.

The behavior of the algorithm in the sequential case can be modelled by repeated calls to the

following sequential program, FIND. The program takes a weighted tree, a nonnull placement, and a

vertex (the vertex at which a request occurs) as input, and returns a vertex (the vertex at which the

resource to be granted is located).

FIND(T,p,v)

Case
p(v) > 0 return v
p(desc1 (v)) = 0 return FIND(T,p,parentr(v))
p(v) = 0 and p(descr(v)) > 0:

[S (w C childrenr(V): p(descr(w)) > 01
return FIND(T,p, random 1,s)]

endcase

Thus, a request is satisfied, as before, in the smallest containing subtree which contains a

resource; where there is a choice, the probability function is used.

Lemma 12: If p is nonnull and v C verticesT, then FIND(T,p,v) eventually halts and
returns a vertex, v, with p(v) > 0.

Proof: Straightforward.I
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We next want to prove a lemma which will be useful in the later analysis. The content of the lemma is

as follows. Let randomT denote the probability function which returns s C leavesr with probability

TT (s). Assume T is a weighted tree and p is a placement which is nonzero only at leaves. Consider

the following two experiments.

(1) Call FIND(T,p,rootT), and

(2) Call FIND(T,p,random).

We claim that the "results" of these two experiments are the same. That is, for each w C

verticesT, the probability that experiment (1) returns w is exactly the same as the probability that

experiment (2) returns w. It will follow from the next lemma that this is so.

Some notation is helpful here. The result of FIND on a particular set of arguments can be

expressed as a probability distribution of vertices. Let aTp v denote the probability distribution of

results for FIND(T,p,v). That is, FIND(T,p,v) returns w with probability aTp,v(w).

Lemma 13: Let T be a weighted tree, p a nonnull placement for T. Assume that p is
nonzero only at leaves. Then the following are true.

(a) If v E internal then aT,p,v = w ~childrenT(v) [[(PT(deSCT(W) )/ 1 (deSCT(V))] aTpw].

(b) If v E vertices1 , then a T,p, = wEdescT(v) [[()T(W)/9T (deSCT(V))] aT,p,wl.

Proof: In the proof, we assume T and p are fixed and write av in place of a Tp v , etc.

(a) We consider cases.

Case 1: p(descT(v)) = 0

Then since the algorithm immediately calls FIND on parentT(v), we see that a-
a pat(v) Similarly, for all children, w, of v, we have (Yw = a Sinceparent,(VYparent T(v)*

X".,Echildren (v) [T 1(deSCT(W))/)T (deSCT(V))] = 1, the result follows.

Case 2: p(desc(v)) >0

Since we are assuming that v internal, we know that p(v) = 0. LetS =

{w E childrenT(v): p(deSCT(W)) > 0). Then S # 0. The third case in the algorithm
holds, and we have that

a =wES [[1(desc r(W))/9PT(desc 1(S))] tw]. Now,

X wchildren T(\) [[T I (deSCT(W))/PT (desc(v))] wj

%1
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=X wES [[TT(deSCT(w))/T(deSCT(v))] aw]

By the remark above, this sum is equal to

a V [IT(descT(S))/?T (deSCT(V))]

+5wEchfldrenT(v).S [[-T(deSCT(W))/T(descT(v))] awl].

*if w E children (v S5, we know that p(deSCT(W)) =0, so that =w a paen a..
* ~~~So the sum above is equal to prnTw

a [TT(deSCT(S))1qT (deSCT(v))l + av XwEchildrenT(v)-S [(p (d eSCT(W))/9FT (deSCT(V))],

= TT(deSCT(S))/T(deSCT(v))I + av I(T(deSCT(V)) - T(deSCT(S)))/ (pT(deSCT(V))],

= V

p (b) We proceed by induction on the height of v.

Base: v E leavesTr

Then the only w in desc(v is v itself, so the sum on the rightisut pv)9vlai

U a ,as needed.

*Inductive step: v E internal T

Then av = YwEchildrenT (v) II[PT(deScT(w))/P(deSCT(v))l aw~l, by part (a),

= wEchildren tv) [[(P 1(deSCT(w))/qT(deSC(v))1 5:sEdesc T(W) [1((S)/(PT(deSCT(w))l as]]'
by inductive hypofhesis,S

wEchildrenT(V) YsEdesc T(w) [[T(~S)/9T (deSCT(v)fl as],

_=Xs~desc (V) [[tPT (s)/Tpr(deSCT(V))I aJ]

* as neededU

Part (b) of this lemma, with v =rootr, proves eq'uivalence of the two experiments described prior to

the lemma.
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We can restrict attention to "request sequences" in place of request patterns, in the sequential case

of the algorithm. Assume that T is a weighted tree, and p is a placement for T. A request sequence, r,

is a sequence of elements of vertices T, representing a sequence of request arrival locations.

Similarly, a resource sequence, r, is a sequence of elements of verticesT, representing a sequence of

resource locations. In either case, let length(r) denote the number of elements in a sequence. A

resource sequence, s. is compatible with a placement, p, provided that Is1 (v)l !_ p(v) for each v E

verticesT. (That is, the resource sequence grants at most the number of resources placed at each

vertex.) If r is a request sequence and p is a placement with total(p) > length(r), then a matching of r

and p is a pair m = (rs). where s is a resource sequence compatible with p and length(r) = length(s).

A matching describes the successive locations of resources which are used to satisfy a sequence of

requests.

Next, we define a probabilistic program which takes as inputs a request sequence, r, and a

placement, o, with total(p) _> length(r), and returns a matching of r and p. The procedure simply uses

FIND repeatedly.

MATCH(T,p,r)

For i = 1 to length(r) do
[s(i) := rIND(,p,r(i))
p(sMi) := p(sMi) - 1]

Theorem 14: Let r be a request sequence, p a placement with total(p) _ length(r).
Then MATC(T,p.r) will eventually halt and return a matching of r and p.

Proof: Straightforward.I1

This algorithm is designed to behave exactly as the sequential case of our general algorithm.

5.2. Cost Measures

Let dist (nv) tenote the tree distance between u and v. If m = (r,s) is a matching, then

'o4r( r(,).si)) Thus, the "sequential cost" is just the sum of the tree distances

butw.en sucCessive re( Lue2st . and their corresponding resources.

If r is a w(:quud,'t '(-nquJn, ,.: with length(r) total(p), then define seqcostT.p(r) to be the expected

mnlJe of se 1 cost (m). whr in is constructed using MA[Ct4(T,pr). Let seqcostT p denote the

exp .,cted vs ILe Of -,.cost, (r). where r is of length total(p), with its successive locations chosen

indtependenfly dccordirq to (I'T.

In the rni ,' r of ti; , -t n we inalyzi soqcostr,



._N .

32

5.3. A Useful Recurrence

In this subsection, we present a solution to a system of recurrence equations. This solution will be

useful in later subsections.

Let c ER . Define G: N xR + - R' by the equations:

GC(O,t) = 0, and GC(k,t) = max{G,(k. 1 ,t,) + Gc(k- 1 't2): ti + t2  ~+ ck-/t, for k> 1.

Lemma 15: For all k > 0, the following are true:

(a) The function mapping t to G C(k,t) is concave downward and monotone
nondecreasing.

(b) If k > 1, then GC(k,t) =2G C(k. 1,t/2) + ck-Vt.

Proof: We proceed by induction on k. The base, k =0, is trivial. For the inductive
step, let k >1. If ti + t 2  ! t, then Gc(k.1,tl) + Gc(k.1 't2) <2G_(k-1,(t1 + Y2 /2), since the
inductive hypothesis states that the function mapping t to GC(k.1,t) is concave. This is in
turn < 2GC(k-l,t/2), by monotonicity. Therefore, GC(k,t) = 2GC(kl1,t/2) + ckl/t, showing
(b). Since each term is concave and monotone, the sum is also, showing (a).1

Theo rem 16: GC (k,t) < (31V 2 + 4)cV-/

Proof: By Lemma 15, G (k,t) = 0 if k =0, and 2G (k- 1,t/2) + ck -Vt if k > 1.
Expanding this recurrence, we see that G (k,t)

=c[I 2.kil(k-i) V t/2'] for all k > 0,

=cl/t[)X 1 =0 -k I (ki) 2'].

Let x = 1/ V2, n =2.k Then

GG(k,t) = (cVtlnV12)[). i -J. (-~

= (cltln12)(1 + kx k+1 . (k +1)x k)/(1._X) 21,

= (c,/t V n) /( V2(11 -i/1 2)2[l + kxk+ . (k + )x ki,

=(citlVn)(312 + 4)[1 + kx k+ .-(k+ 1)x kl,

= (clVt Vn)(3 V2 + 4)[1 + (kx -k -1)x kl,

< (c VtlVn)(3 V2 + 4), since kx -k - <0,

=(c/t2 2 k)(3 V 2 + 4).1
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5.4. Recursive Analysis

Now, we require Restriction 3 and a new assumption, Restriction 4. These are to remain in force

for the remainder of Section 5.

Restriction 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

Restriction 4:

T is a complete binary tree.

If T is a weighted tree. then a weighted subtree, T', of T consists of a subtree of T together with a

probability function. qT" given by PT,(v) = rT(V)/q)T(verticesT,). That is, the weights of the subtrees

are just nor-nalized restrictions of the weights of T. If T is a weighted binary tree, let leftT and right T

denote the designated weighted subtrees of T.

If T has height at least 1, then let Ti and T2 denote leftT and rightT, respectively. Let p, and P2

denote piT1 and pjT 2, respectively. If r is a request sequence, let overflowT p(r) denote

jit '(verticesr ) - p(vertices 1 ), the difference between the number of requests that arrive in the left

subtree and the number of resources placed there. Let overflowT,p denote the expected value of

ovcrflowr,p(r), where r is a sequence of length total(p) chosen using T'

The following is a key lemma which provides a recursive breakdown for the sequential cost. It

says that the expected cost of matching breaks down into costs of matching within the twc subtrees,

plus a charge for the requests that overflow into the opposite subtree.

Lemma 17: Assume height r > 1. Then seqcostT,p _ seqcostT1, P, + seqcostr2,P2 +
2 heightr overflowTp'

Proof: For any particular request sequence, r, there is some particular number,
overflow,, P(r). of requests that do not get satisfied within their own subtree, but rather
overflow into the opposite subtree to find a resource. To be specific, assume that it ;s the
left subtree from which any excess requests overflow. Let r1 be the subsequence of r
cons' ,tinqi of rquests arriving in Ti, truncated to length p(T1). Let r2 be the subsequence
of r cornsisrting of r'qu t'-s arriving in T2. Recall that seqcostT is the expectation of the
search cost fur r ,oiigh requests to exhaust all resources present.

Before the time at which the left subtree overflows, the algorithm MATCH(T,p,r) runs
exactly li e MATCH(T 1.p1,r1) within the left subtree. Requests originating with-n T,
become natch,.rJ to exactly the same resources in both executions.

W now con, ier the right subtree. Requests which originate within the right subtree
ire handled in th, algorithm MATCH(T,pr) exactly as they are in the algorithm for T,) and
), iavituvr. thor, ;ito also oviorflow requests from the left subtree, which enter T2 at its
root rather tlii :it its leaves. By Lemma 13, whenever such a request arrive3, its
pioh bility of b1.,,ig matched to ,ry particular resource is exactly the same as if the

. . . . . .. . . .. .. .. . .
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request had entered at a random leaf of T2. All the requests remain independent, and
these additional requests are just enough to exhaust the resources in T2.

Now assume that the request sequences, r, are chosen at random according to qT'

They result in subsequences r1 and r2 which are chosen at random according to7T and

'T2, respectively.

We claim that seqcost~ ,p , the expected cost taken over all r, is bounded by

seqcostmTp , the expected cost taken over random sequences in the left subtree,

+ seqcost the expected cost taken over random sequences in the right subtree,

+ 2 height T overflowTP.

The third term allows for the expected overflow of requests, and assigns them the
maximum cost, 2 height T.

Consider the first term. (The second term is analogous.) The first term allows for the
expected cost incurred by an execution of MATCH on a random sequence of requests
within T1.

In case T has its resources exhausted by requests originating within that subtree, this
term measures exactly the expected cost for the matching of the first requests in T1 to all
the resources in T . This term ignores the cost incurred by any excess requests
originating within T1 which do not get matched within T1. However, that is not a problem,
since those costs are counted by the third term.

In case T does not have its resources exhausted by requests originating within TV this
term Is actually greater than needed to measure the expected cost of matching all requests
originating in T in fact, it is enough to measure this cost of matching these requests,

interspersed with enough other random requests (arriving at the leaves of T1 ) to use up all
the resources in T . W, have already argued that these requests behave as if they were
interspersed with other random requests, because requests arriving at the root match in
the same way as if they arrived at random leaves. In this case, the first term does not
account for the cost of matching those requests which enter T at its root. However, that is
not a problem since that cost is covered by the third term.I

5.5. d-Fairness

We need to make another restriction on the algorithm, for the purpose of analysis. In particular, it

is reasonable that the behavior of the algorithm should be best when the resources are distributed in

the tree in .scme relationship with the probability distribution governing arrival of requests. (The paper

[Fischer. Griffeth, Guibas an(J Lynch (1981)] considers optimal placements of resources in a tree

ietwork.)
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For d E RP* we say that a placement, p, is d-tair provided that the following is true. Let u,v E

vertices, where u E descT(v). Let p,= TT(deSCT(v)) and 92= (PT(deSCT(U)). Then Ip(JeSCT(u))

(IT2/il )p(deSCT(v))l d V(T2/(P1)p(desc(v)). That is, for each subtree, the number of resources
placed in each of its subtrees is approximately proportional to the probability of arrivals in that

subtree, and the difference is proportional to the "standard deviation". For any T, if t and d are

sufficiently large, then techniques in [Fischer, Griffeth, Guibas and Lynch (1981)] can be used to

produce d- fair placements of t resources in T.

From now on in Section 5, we assume the following.

Restriction 5:

p is dVair (for some arbitrary but fixed d).

The next lemma says that restrictions of d-fair placements are also d-fair.
Lemma 18: Let p be a d-fair placement for T. Let T' be any subtree of T, and p' =

plvertices1., the restriction of p to vetcs"Then p' is d-fair for T'.

Proof: Let u, v C vrieT" with u E descT.(v). Let r,= 7)T(deSCT(V))' T2 =

T1(deSCT(U))' 9?'l = )T-(deSCT-(v)), and 7)2= q(P.deSC~.u)). Then (P,=
TIj/(T(verticeST-) and 4P2 = P2/q)(verticeST.), by definition. Therefore, (P'(2)/qF'(1) =

Note that p'(descT.(u)) = p(deSCT(U)), and p'(deSCT'(v)) = p(descT(v)). Thus,

<d V (T)2/(P1)p(deSCT(v)) since p is d-fair,

d V (q' 2/q)l)p'(deSCT(v)), as needed.I

The final lemma of this subsection bounds the expected overflow for d-fair placements.

Lemma 19: overflowT~p (6 + d) V q~(verticeSTII) total(p).

Proof: I1rr'(verticesr )I - p(verticeST )I < llr 1(verticesT )I - (T(verticeST, ) total(p)l +

IIT (vertices r total(p)j - (verticesT I

The expected value of the first of these quantities, taken over r, is bounded by
6V(verticesr )totL(P), using Lemma 3.1.5 of [Fischer, Griffeth, Guibas and Lynch

The second quantity is bounded by d V ~TverticeSr ) total(p), since p is d-fair.U
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5.6. Sequential Analysis

Let sieTdenote the number of vertices in T. We now give the main result of Section 5, that

seqcost T~ is 0( V size T total(p)). This says, for example, that if total(p) is proportional to sizeT, then

the total cost is proportional to total(p). This implies that the average cost per request is just a

constant. independent of the size of the network.

In order to prove this theorem, we require the following restrictions, repeated here for

convenience.

Restriction 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

Restriction 4:

T is a complete binary tree.

Theorem 20: seqcost TI is 0(/ size T total(p)).

(More specifically, seqcostT~p (3V12 + 4 )(( 6 + ) N/2 ) 2 height T total(p).)
Proof: By Theorem 16, it suffices to show that seqcostT~p : Gc(height~,total(p)),

wherec =(6+d),,2.

We proceed by induction on height T'

Base: height'r = 0

Then T has a single vertex, and seqcost T~ = 0. The inequality is immediate.

Inductive Step: heightT > 1

1,Then seqcost <~ : seqot tP + seqcostT22 + 2 heightT overflow Tp, yLem

19 seqcost, V P + seqcost 2P2 + 2 heightT (6 + d) V T(verticeST )total(p), by Lemma

A similar inequality holds for T 2 in place of T, within th e square root. Since at least one
Of T r(verticeST ), q) r (verti ceST ) is no more than 1/2, it follows that seqcostT~p :

seqcostT1,P + seqcostT22 + 2 height T (6 + d) V/ (1 /2) total(p),

seqcostTP1 1 + seqcostT22 + (6 + d) /2 height~ T total(p).
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By Lemma 18, we can apply the inductive hypothesis, which implies that the right hand
side of this inequality is at most equal to

G,(heightm - 1,total(p1 )) + Gc(height T . 1,total(P 2)) + (6 + d)-/2 heightT -V total(p).

The definition of Gc implies that this latter expression is at most equal to

G,(heightT'total(p)), as needed.I

6. The Final Analysis
In this section, we combine the monotonicity analysis and the sequential analysis, to obtain an

upper bound for the expected cost for the algorithm.

6.1. Relationship Between the Costs

Now we require the following restrictions.

Restriction 1:

T is a vweighted tree, and the nondeterministic choice step in Part (2) of the algorithm uses a call to

random T.

Restriction 2:

Delivery time for messages is always exactly 1.

With these restrictions, there is a close relationship between the costs of our general algorithm

and the cost of the equential algorithm MATCH.

Lemma 21: seqcost Tp = lim a -o o(bnumT,p(a'f) + vbnumT,p(af)).

Pjoof: There is an absolute upper bound on the time for our algorithm to satisfy a
single reguest. in the absence of concurrent requests. Thus, as a increases, the
probbility that there are any con; jrrent requests approaches 0.

Tbrefore. the limiting case of the general algorithm behaves like MATCH. There is no
backtrackng, so the total search time just reduces to the sum of the distances from
requstS to the resources which satisfy them. This sum is just the total number of buyer
and v\rtual buyer messages.I

Now let us add en more r-ftriction:

Restriction 3:

T has all V avs at the same distance from the root, and r and p are nonzero only at leaves.

With thi, added restrictrin. we can prove a variant of the preceding lemma.

. . . .. .. ,- - - - - - --. " .. . :- .- .- - - -- - - - .- .-. . ,. . ., . . -. •
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Lemma 22: seqcostT p = 2 lima .o(bnumTp (af)).

Proof: By Lemm -, '1 and 4.1

This immediately implies the following bound on the cost of the general algorithm.

Lemma 23: costTDf) 2 seqCOst, p.

Proof: By Theorem 11 and Lemma 22.1

6.2. The Main Theorem

Now we are ready to present the main result, the upper bound for the expected cost for the

general algorithm In order to apply the results of both the monotonicity analysis and the sequential

analysis, we must assume the restrictions made for both cases. More specifically, we assume all of

Restrictions 1-5:

* Restriction 1:

T is a weighted tree, and the nondeterministic choice step in Part (2) of the algorithm uses a call to

randomT5 .

Restriction 2:

Delivery time for messages is always exactly 1.

Restriction 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

Restriction 4:

T is a complete binary tree.

Restriction 5:

p is d-fair (for some arbitrary but fixed d).

Theorem 24: Let f be a probability function. Then cost M(f) is 0(-/ sizeT total(p)).T,pT
. (Ivlore specifically, costrTp(f) _< 2(3 V 2 + 4)((6 + d),/ 2) V 2 heightT total(p).)

Proof: By Lemma 23 and Theorem 20.1

In particular, provided that total(p) is proportional to sizeT' the expected average time taken by

this algorithm to satisfy a single request is constant, independent of the size of the network.

__-___. --
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Remark: It is possible to prove a variant of Theorem 24, for the case in which the placem, p is

chosen at random using qT' (just as the request locations are chosen), rather than being d-fair. We
sketch the ideas briefly.

First, we must extend the cost definitions to include expectations taken over placements of a

particular length. Thus, we define costT,t(f) to be the expected value of cost T,p(f) for p with total(p) =

t. Analogous definitions are made for seqcostT t and overflowT,X. Lemma 23 then implies that

costTt(f) < 2 seqcostT t. It is also easy to see that overflowmt  d -/ T(verticesT ) t, for some

* constant d.

Next, we prove a consequence of Lemma 17 which says that seqcostT t  ExP(tl,t2) with t I t2 = t

(seqcostT 1 t1 + seqcostT2 t2 ) + 2 height T overflowT,r (Here, the expectation is taken over pairs
which are obtained by using PT to assign resources to T1 or T2.) This obviously implies that

seqcost T <max(t1Vt 2 ) with t1 + t2 = t (seqcosT 1, t 1 + seqcostT2 t2 ) + 2 height. overflowTX

Now we prove a variant of Theorem 20 which says that seqcostT,t is 0(/ sizer t). More

specifically, we show that seqcost T Gc(heightTt), where c = d / 2. This is easily done by
induction as before, using the new lemmas just described.

Combining these results, we see that costTt(f) is 0(/ sizeT t).

7. Remaining Questions
There are several directions for remaining research.

First, we would like to extend the analysis of the general algorithm. We would like to loosen our
restrictions on tree shape, message delivery time, and locations for resources and requests. If we do

th', is it p,)ssible to carry out an analysis similar to the one in this paper?. In particular, can the

c r,( rrent case,; of the algorithm still be bounded in some way in terms of the sequential case?

.... wvould also hke to extend the analysis of the sequential algorithm, MATCH. Here, we would

to, losf, n restrictions on tree shape and on locations for resources and requests.

I hre: :re some apparent improvements in the algorithm, for example adjusting the probabilities
r<-r ht, choice amrong children in response to knowledge of the number of resources remaining in

,.-Li htree. W ile this seems like an improvement, the resulting algorithm seems harder to analyze

(I,-o the recursi,,e decomposition doesn't appear to work). Can any simple modifications be shown

to U.. improvements?

*JV would like to compare the performance of this algorithm to that of alternative algorithms which
*-. :ni1,vo Pie saine problem. We have already observed that this algorithm performs much beiter than the

c, nt, O .- i ,lgorithm. which locates all resources at the root. How does it compare to algorithms

0.
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which allow requests to search for resources in parallel rather than sequentially? What about

algorithms which rebalance resources? Are there other interesting ideas for algorithms for this

problem?

Finally, the general analysis strategy is quite attractive. Proving a monotonicity result which

bounds the concurrent cases of an algorithm in terms of the sequential case, and then analyzing the

sequential case by traditional techniques, appears quite tractable. The use of this strategy for our

": algorithm appears to depend on many special properties of the algorithm and on restrictions on the

execution. Is the strategy more generally useful? For what type of algorithms can it be used?
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